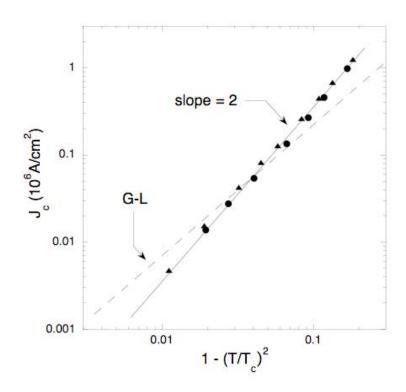
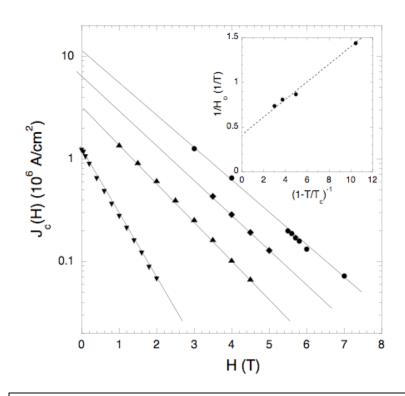

Superconducting Properties of MgCNi₃ Micro-fibers

Philip W. Adams*, Louisiana State University, DMR-0204871

- ■We have developed a process to synthesize superconducting MgCNi₃ directly onto 6-8 micron diameter carbon fibers. MgCNi₃ is the only known superconducting non-oxide perovskite and has been the subject of intense study since its discovery 2 years ago. Because of its high Ni content, there is speculation that MgCNi₃ is near a ferromagnetic instability, though its status as an unconventional superconductor remains unclear.
- ■The fibers, such as those in the micrograph, can be made in kilometer lengths via a straightforward solid state reaction process. Indeed, the fibers are some of the smallest continuous length superconductors in existence and have a zero temperature critical current density $J_c \sim 5 \times 10^7 \text{ A/cm}^2$. We are presently studying the anomalous critical current behavior of the fibers.



Normalized resistivity as a function of temperature for a carbon fiber coated with 80 nm of Ni and a fiber with a 80 nm MgCNi₃ sheath. Inset: scanning electron micrograph of MgCNi₃ fibers.


*In collaboration with Prof. D.P. Young

Superconducting Properties of MgCNi₃ Micro-fibers

Philip W. Adams, Louisiana State University, DMR 0204871

Non--Ginsburg-Landau scaling behavior of the transport critical current in two MgCNi₃ microfibers. We believe that the anomalous quadratic scaling is an intrinsic property and not a microstructural effect.

Longitudinal magnetic field dependence of the critical current density at $6.8~\rm K$, $6.0~\rm K$, $5.5~\rm K$, and $5.0~\rm K$ (bottom to top). Solid lines are exponential fits to the data from which a characteristic decay field H_o is extracted. Inset: characteristic field as a function of the inverse of the reduced temperature.